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Abstract—In this paper, we propose a context-aware local binary feature learning (CA-LBFL) method for face recognition. Unlike

existing learning-based local face descriptors such as discriminant face descriptor (DFD) and compact binary face descriptor (CBFD)

which learn each feature code individually, our CA-LBFL exploits the contextual information of adjacent bits by constraining the number

of shifts from different binary bits, so that more robust information can be exploited for face representation. Given a face image, we first

extract pixel difference vectors (PDV) in local patches, and learn a discriminative mapping in an unsupervised manner to project each

pixel difference vector into a context-aware binary vector. Then, we perform clustering on the learned binary codes to construct a

codebook, and extract a histogram feature for each face image with the learned codebook as the final representation. In order to exploit

local information from different scales, we propose a context-aware local binary multi-scale feature learning (CA-LBMFL) method to

jointly learn multiple projection matrices for face representation. To make the proposed methods applicable for heterogeneous face

recognition, we present a coupled CA-LBFL (C-CA-LBFL) method and a coupled CA-LBMFL (C-CA-LBMFL) method to reduce the

modality gap of corresponding heterogeneous faces in the feature level, respectively. Extensive experimental results on four widely

used face datasets clearly show that our methods outperform most state-of-the-art face descriptors.

Index Terms—Face recognition, binary feature learning, context-aware, multi-feature learning, heterogeneous face matching

Ç

1 INTRODUCTION

FACE recognition has attracted much attention in com-
puter vision and numerous face recognition methods

have been proposed over the past three decades [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. As a repre-
sentative pattern recognition problem, there are two main
procedures in a practical face recognition system: face
representation and face matching. Face representation aims
to extract discriminative features to separate face images of
different persons, and face matching is to design effective
classifiers to recognize different persons.

A variety of face representation methods have been pro-
posed in recent years [1], [2], [3], [8], [13], [14], and they can
be mainly classified into two categories: holistic feature
representation [2], [5] and local feature representation [1],
[3], [8], [13]. Representative holistic features are principal
component analysis (PCA) [5], linear discriminant analysis
(LDA) [2], and their variations [2], [5]. Representative local
features include local binary patterns (LBP) [1], Gabor
descriptor [3], discriminant face descriptor (DFD) [8] and

compact binary face descriptor (CBFD) [13]. Generally, local
features achieve better performance than holistic features
due to their stableness and robustness to local changes in
feature description [13], [15], [16].

Most existing local feature descriptors are hand-crafted [1],
[15], [16], [17], which usually require strong prior knowledge
and are heuristics. While learning-based methods such as
DFD and CBFD learn feature representations from raw pixels
directly, they only learn each feature code individually and
are more susceptible to noise. Contextual information is an
effective manner to address the limitation of such unstable-
ness because context provides strong prior knowledge, which
enhances the robustness and stableness of various visual
analysis tasks such as video understanding [18], object detec-
tion [19] and visual recognition [20]. Inspired by the fact that
contextual information can provide effective cues to improve
the robustness of binary codes, we propose a context-aware
local binary feature learning (CA-LBFL) method for face rec-
ognition, which learns context-aware binary codes directly
from rawpixels for face representation. Comparedwith exist-
ing feature learning methods which learn feature codes sepa-
rately, our CA-LBFL exploits the contextual information of
adjacent bits by limiting the number of bitwise changes in
each descriptor, and obtains more robust local binary fea-
tures. First, we extract pixel difference vectors (PDV) for each
face image, and learn a mapping matrix to project each PDV
into a context-aware binary vector. Then,we learn a codebook
by clustering from all binary codes, and construct a histogram
feature for each face image with the codebook as the final
representation. Fig. 1 illustrates the pipeline of our proposed
approach. As the values from different scales are simply

� The authors are with the Department of Automation, State Key Lab of
Intelligent Technologies and Systems, and Tsinghua National Laboratory
for Information Science and Technology (TNList), Tsinghua University,
Beijing 100084, China. E-mail: duanyq14@mails.tsinghua.edu.cn,
{lujiwen, jfeng, jzhou}@tsinghua.edu.cn.

Manuscript received 7 Mar. 2016; revised 2 May 2017; accepted 25 May 2017.
Date of publication 30 May 2017; date of current version 10 Apr. 2018.
(Corresponding author: Jiwen Lu.)
Recommended for acceptance by T.Darell, C. Lampert,N. Sebe, Y.Wu, andY. Yan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2017.2710183

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 5, MAY 2018 1139

0162-8828� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6121-5529
https://orcid.org/0000-0002-6121-5529
https://orcid.org/0000-0002-6121-5529
https://orcid.org/0000-0002-6121-5529
https://orcid.org/0000-0002-6121-5529
https://orcid.org/0000-0003-4971-6707
https://orcid.org/0000-0003-4971-6707
https://orcid.org/0000-0003-4971-6707
https://orcid.org/0000-0003-4971-6707
https://orcid.org/0000-0003-4971-6707
mailto:
mailto:


concatenated into PDV, the diversity of scales cannot be well
exploited. To address this, we present a context-aware local
binary multi-scale feature learning (CA-LBMFL) method to
jointly learn multiple projection matrices to make better use
of multiple scale local information. Moreover, we propose a
coupled CA-LBFL (C-CA-LBFL) method and a coupled CA-
LBMFL (C-CA-LBMFL) method which minimize the modal-
ity gap of corresponding heterogeneous faces in the feature
level to adapt our methods to heterogeneous face recognition.
Extensive experimental results on LFW, YouTubeFace (YTF),
FERET and CASIA NIR-VIS 2.0 show that our methods out-
performmost state-of-the-art face descriptors.

The main contributions of this work are summarized as
follows:

1) We propose an unsupervised local feature learning
method to learn context-aware binary descriptors for
face representation. CA-LBFL exploits contextual
information of the adjacent binary bits, which pro-
vides effective prior knowledge to learn robust
binary feature representations. With the contextual
information, the learned local binary features are
more stable to local changes and deliver stronger dis-
criminative power.

2) We apply a joint learning method to learn multiple
projection for feature mapping. The proposed CA-
LBMFL method exploits the specific characteristic
from different scales as well as the interactions of dif-
ferent projection of matrices, which can make better
use of multiple local scale information.

3) We further develop coupled learning methods based
on CA-LBFL and CA-LBMFL for heterogeneous face

matching. The coupled methods learn pairs of hash
functions for different modalities simultaneously,
which minimize the modality gap of heterogeneous
faces in the feature level.

2 BACKGROUND

In this section, we briefly review three related topics: 1) face
representation, 2) feature learning, and 3) binary feature
descriptor.

2.1 Face Representation

Face representation mainly includes two categories: homoge-
neous face representation and heterogeneous face representa-
tion. Homogeneous face representation aims to recognize
faces from the same modality, while heterogeneous face
representation matches faces from different sources, such as
visible photos to near infrared images or sketches.

Existing homogeneous face representation methods can be
mainly classified into two categories: holistic feature repre-
sentation [2], [5] and local feature representation [1], [3], [8],
[13]. Holistic features learn a feature subspace to preserve the
statistical information of face images, where PCA [5] and
LDA [2] are representative such methods. Local features
describe the structure pattern of each local patch rather than
the whole image, and combine the statistics of all patches to
build a concatenated feature vector. Local feature representa-
tion methods can be divided into hand-crafted and learning-
base. Hand-craftedmethods such as LBP [1] andGaborwave-
lets [3] compute the gradient or texture information within
local regions first and then generate a concatenated feature
vector for face representation. However, these features
usually require strong prior knowledge to engineer them.
Learning-basedmethods such asDFD [8] andCBFD [13] learn
distinctive local features in a data-drivenway.

Heterogeneous face representation suffers from large
modal discrepancies and it is desirable to design cross-modal
models which are robust to the intra-modality differences.
Existing heterogeneous face representation methods mainly
contains three categories: image synthesis [21], [22], modality-
invariant feature extraction [23], [24] and common space pro-
jection [25], [26]. Image synthesis approaches transform faces
of one modality into another, so that heterogeneous facial
images can be directly compared. Representative methods
include face sketch synthesis with embedded hiddenMarkov
model (E-HMM) [21] and face identity-preserving (FIP) fea-
tures [22]. Modality-invariant feature extraction approaches
extract local features which are robust to modalities, such as
histogram of averaged oriented gradients (HAOG) [23] and
graphical heterogeneous face recognition (G-HFR) [24]. How-
ever, both image synthesis and modality-invariant feature
extraction approaches are modality-specific. Common space
projection methods learn a common subspace to minimize
the modal differences. For example, Yi et al. [25] learned a
canonical correlation analysis (CCA) based projection.
Mignon and Jurie [26] presented a cross modal metric learn-
ing (CMML) approach by learning a common subspace. Dif-
ferent from modality-specific heterogeneous face recognition
approaches, our C-CA-LBFL and C-CA-LBMFL learn a com-
mon subspace in an unsupervised manner, which are widely
applicable to various heterogeneous face recognition tasks.

Fig. 1. The flow-chart of our proposed CA-LBFL approach for face repre-
sentation. For each training image, we first extract pixel difference vectors
(PDV) and learn a discriminative mapping W to project each PDV into
context-aware binary codes, where adjacent bits are enforced as equal
as possible to enhance the robustness of the descriptor. Then, a code-
book is learned by clustering for feature encoding. For each test image,
the PDVs are first extracted and then projected into context-aware binary
codes using the learned feature mapping. Finally, a histogram feature
descriptor is extracted from binary codes with the learned codebook.
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2.2 Feature Learning

There have been extensive work on feature learning in recent
years [27], [28], [29], [30], [31], [32], and representative fea-
ture learning models include sparse auto-encoders [27],
denoising auto-encoders [28], restricted Boltzman
machine [29], convolutional neural networks [30], indepen-
dent subspace analysis [31], and reconstructio independent
component analysis [32]. Recently, feature learning based
methods have achieved reasonably good performance in
many face recognition systems [8], [33], [34], [35]. For exam-
ple, Sun et al. [33] proposed a deep hidden identity features
(DeepID) method through deep convolutional neural net-
works. Hussain et al. [34] presented a local quantized pattern
(LQP) method by modifying the LBP method with a learned
coding strategy. Cao et al. [35] proposed learning-based (LE)
feature representation method by applying the bag-of-word
(BoW) framework. Lei et al. [8] presented a discriminant face
descriptor method by learning an image filter using the LDA
criterion to obtain LBP-like features. Lu et al. [13] proposed
a compact binary feature descriptor by learning a hashing
filter to project each image patch into a compact binary
vector in an unsupervised manner. They also presented a
simultaneous local binary feature learning and encoding
(SLBFLE) [14] approach to simultaneous learn the projection
matrix and the dictionary. However, both CBFD and SLBFLE
only exploit the relationship of binary bits at the same posi-
tion, while the proposed CA-LBFL investigates the contex-
tual informationwithin each binary descriptor.

2.3 Binary Feature Descriptor

Recently, binary feature descriptors have received increasing
interest due to their efficiency of storing andmatching in com-
puter vision. Earlier binary descriptors include binary robust
independent elementary feature (BRIEF) [36], oriented FAST
and rotated BRIEF (ORB) [37], binary robust invariant scalable
keypoint (BRISK) [38] and fast retina keypoint (FREAK) [39].
BRIEF computes binary vectors directly by simple binary tests
between pixels in a smoothed image patch. ORB improves
BRIEF by employing scale pyramids and orientation opera-
tors to obtain scale and rotation invariance. BRISK shares the
similar purpose asORBby leveraging a circular sampling pat-
tern. FREAKuses the retinal sampling grid for fast computing
and matching inspired by the human visual system, retina.
However, the performance of these methods is not powerful
enough because raw intensity comparisons are susceptible to
scale and transformation. To address this, several learning-
based methods [40], [41], [42], [43], [44], [45] have been pro-
posed in recent years. For example, Trzcinski et al. [43] pre-
sented D-BRIEF method to learn discriminative projections
by encoding similarity relationships. They also applied boost-
ing to learn hash functions in BinBoost [44]. Balntas et al. [40]
proposed a binary online learned descriptor (BOLD) maxi-
mize the inter-class distances as well as minimize the intra-
class distances of binary codes, respectively.

3 CONTEXT-AWARE LOCAL BINARY FEATURE
LEARNING

In this section, we first present the proposed CA-LBFL
method, and then introduce how to use CA-LBFL for face
representation.

3.1 CA-LBFL

Let X ¼ ½x1; x2; . . . ; xN � be the N samples of the training set,
where xn 2 Rd ð1 � n � NÞ is the nth pixel difference vector
obtained from an original image. Fig. 2 illustrates the
approach to extract a PDV from the given face patch. In this
work, we utilize raw pixels rather than HSV to compute
PDV. More specifically, we use grayscale values of pixels
which are the means of the three channels of RGB. PDV is
able to encode important visual patterns such as lines and
edges as it describes the changes of pixel values by measur-
ing the differences between the central pixel and neighbor-
ing pixels. In our method, we learn K hash functions to
map and quantize each xn into a binary vector bn ¼ ½b1n; . . . ;
bKn�T 2 f0; 1gK�1 to obtain context-aware binary codes. Let
wk 2 Rd be the projection vector for the kth function, and
the kth binary code bkn of xn can be computed as

bkn ¼ 0:5� ðsgnðwT
k xnÞ þ 1Þ; (1)

where sgn(v) equals to 1 if v � 0 and �1 otherwise.
In order to make our binary codes context-aware, adja-

cent bits should be as equal as possible, e.g., “11100000”
and “00111000”. However, this restraint may enforce each
learned binary code to all-zeros or all-ones, which largely
reduces the distinctiveness of binary codes. Therefore, a
desirable binary code should be that there is only one shift
between 0 and 1 in each binary vector. Bits in context-
unaware binary codes are more likely to be affected by
noise in face images because there is no limitation to pre-
vent such bitwise changes, such as the 0/1 shift of B in
Fig. 3a. Context-aware learning partially solves this prob-
lem by limiting the sum of bitwise 0/1 changes in each
binary code and making the code more smooth. Fig. 3b
illustrates that even if small changes affect the original
code X, the learned binary descriptor keeps stable as
potential bitwise changes are intercepted due to the limits
of contextual information. Context-aware is an important
criterion to learn compact binary codes, as noise is sup-
pressed due to the contextual information, and the robust-
ness of the binary codes is improved without harm of
distinctiveness.

Inspired by the above motivations, we formulate the fol-
lowing optimization objective function to binary codes for
feature representation

Fig. 2. An illustration to show how to extract a pixel difference vector
(PDV) from the original face image in our approach. Given any pixel in
the image, we first compute the differences between the central pixel
and its ð2Rþ 1Þ � ð2Rþ 1Þ neighboring pixels, where R is the parameter
to set the neighborhood size. Then, these differences are aligned as a
vector which becomes the PDV feature of the pixel. R is selected as 1 in
this figure for easy illustration, so that the PDV is a 8-dimensional vector
as there are eight neighboring pixels selected.
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min
wk

J ¼ J1 þ �1J2 þ �2J3 þ �3J4

¼
XN
n¼1

XK�1

k¼1

kbkn � bðkþ1Þnk2 � 1

�����
�����
2

þ �1

XN
n¼1

XK
k¼1

��ðbkn � 0:5Þ �wT
k xn
��2

þ �2

XK
k¼1

XN
n¼1

ðbkn � 0:5Þ
�����

�����
2

� �3

XN
n¼1

XK
k¼1

kbkn � mkk2;

(2)

where N is the number of PDVs which are extracted from
the original images, mk is the mean of the kth bit of all N
PDVs, and �1, �2, �3 are three parameters to balance the
weight of different terms.

In the first term J1, the physical meaning of
PK�1

k¼1 jj bkn �
bðkþ1Þnjj2 is the sum of bitwise 0/1 changes in each binary vec-
tor. As aforementioned, to avoidmaking all the learnedbinary
codes the same (all zeros or ones), we encourage the sum of
bitwise changes to be one. Fig. 4 illustrates an example of cal-
culating J1. The minimization of J1 makes the adjacent bits in
the learned binary codes equal as possible, aswell as avoiding
the appearance of all zeros or ones, so that the contextual
information is used and the codes are more robust to the
noises. J2 aims to reduce the quantization loss between the
original features and the learned binary codes, which mini-
mizes the loss of energy in the process of projection. J3 aims to

make each feature bit in the learnedbinary codes is evenlydis-
tributed, so that most information can be conveyed by each
bit. J4 is to maximize the variance of the learned binary codes
tomake the each projection vector as independent as possible.

LetW ¼ ½w1;w2; . . . ;wK � 2 Rd�K be the projectionmatrix,
and each sample xn can bemapped into a binary vector as fol-
lows:

bn ¼ 0:5� ðsgnðWTxnÞ þ 1Þ: (3)

Then, (2) can be re-written into the matrix form as

min
W

J ¼ J1 þ �1J2 þ �2J3 þ �3J4

¼ trðððABÞT ðABÞ � INÞ2Þ
þ �1jjðB� 0:5Þ �WTXjj2F
þ �2jjðB� 0:5Þ � 1N�1jj2F
� �3trððB�UÞT ðB�UÞÞ;

(4)

where B ¼ 0:5� ðsgnðWTXþ 1Þ 2 f0; 1gK�N is the matrix of
all binary codes, U 2 RK�N is the mean matrix repeating the

row vector of the mean of all binary bits, IN is the identity

matrix, and matrixA 2 f0; 1;�1gðK�1Þ�K is designed to min-

imize the difference between adjacent bits in binary codes as

follows:

aij ¼
1; i ¼ j;

�1; i ¼ j� 1;

0; otherwise:

8><
>: (5)

where aij is the element of the matrix A, and i and j are the
indices. Therefore, AB is the matrix that represents the dif-
ferences between all the adjacent bits in learned binary
codes, and the diagonal of ðABÞT ðABÞ is the sum of bitwise
changes of each learned binary code.

As the non-linear sgn(�) function makes (4) an NP-hard
problem, we relax the sgn(�) function as its signed magni-
tude [46]. Thus, J1 can be rewritten as follows:

J1ðWÞ ¼ trðððAWTXÞT ðAWTXÞ � INÞ2Þ
¼ trðXTWATAWTXXTWATAWTXÞ
� 2� trðXTWATAWTXÞ þN:

(6)

Fig. 3. Learning without contextual information in (a) CBFD and (b) our CA-LBFL. CA-LBFL learns context-aware binary codes that adjacent bits tend
to be equal. We see that when face images are affected by variations such as varying poses, expressions, illuminations, occlusions, resolutions, and
backgrounds, binary codes learned by our method still keep smooth and are more stable compared with context-unaware methods.

Fig. 4. An illustration of the physicalmeaning of J1. The formula above rep-
resents the number of bitwise changes in each binary code which encour-
ages all-zeros or all-ones descriptors, while the below one prefers one-
shift binary descriptors and improves the diversity of learned binary codes.
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Similarly, we rewrite J3ðWÞ and J4ðWÞ as

J3ðWÞ ¼ kðWTX� 0:5Þ � 1N�1k22
¼ trðWTX1N�111�NXTWÞ
�N � trð11�KWTX1N�1Þ
þ 0:25� 11�N1N�1

(7)

J4ðWÞ ¼ trðWTXXTWÞ � 2� trðWTXMTWÞ
þ trðWTMMTWÞ; (8)

where M 2 Rd�N is the mean matrix which are repeated
row vector of the mean of all PDVs.

While the objective function in (4) is not convex for W
and B simultaneously, it is convex to one when fixing the
other. Therefore, we optimize W and B using the following
iterative approach.

Obtaining B with a fixed W: when W is fixed, the objective
function in (4) can be rewritten as follows:

min
B

JðBÞ ¼ jjðB� 0:5Þ �WTXjj2F : (9)

As B is a binary matrix, the solution can be directly obtained
as

B ¼ 0:5� ðsgnðWTXÞ þ 1Þ: (10)

Learning W with a fixed B: when B is fixed, the objective
function in (4) can be rewritten as follows:

min
W

JðWÞ ¼ trðXTWATAWTXXTWATAWTXÞ
� 2� trðXTWATAWTXÞ þ trðWTQWÞ
� 2� �1trððB� 0:5Þ � XTWÞ
� �2 �N � trð11�KWTX1N�1Þ

subject to WTW ¼ I;

(11)

where

Q , �1XX
T þ �2X1

N�111�NXT

� �3 � ðXXT � 2XMT þMMT Þ: (12)

We use gradient descent method with the curvilinear
search algorithm to solve W. Algorithm 1 summarizes the
detailed procedure of the proposed method.

3.2 Face Representation Using CA-LBFL

Having obtained the projection matrix W, we first project
each PDV into a low-dimensional binary vector. Then, all
binary codes within the same face region are represented as
a histogram feature using a codebook learned from the
training set by an unsupervised clustering method1 for face
representation. Lastly, features from all regions within a
face are combined as the final representation of the whole
face image. Fig. 5 illustrates the approach of face representa-
tion based on CA-LBFL.

Algorithm 1. CA-LBFL

Input: Training set X ¼ ½x1; x2; . . . ; xN �, iteration number T ,
parameters �1, �2 and �3, binary code length K, and conver-
gence parameter �
Output: Projection matrixW
1: Initialize W as the top K eigenvectors of XXT correspond-

ing to theK largest eigenvalues.
2: for t ¼ 1; 2; . . . ; T do
3: Update Bwith fixedW using (10).
4: UpdateWwith fixed B using (11).
5: if jWt �Wt�1j < � and t > 2 then
6: break
7: end if
8: end for
9: return W

4 CONTEXT-AWARE LOCAL BINARY MULTI-SCALE

FEATURE LEARNING

While CA-LBFL learns discriminative features from image
patches, the values of PDV in different scales are simply
concatenated together as the input feature vector. However,
each value in different scales has a specific characteristic, so
that the naive operation of alignment loses the diversity
of scales, which leads to a suboptimal result. In order to
exploit the specific characteristic from different scales as
well as the interactions of different projection matrices, we
propose a context-aware local binary multi-scale feature
learning method to jointly learn multiple projection matri-
ces for mapping, where each projection matrix corresponds
to a specific scale of PDV.

Suppose there are R vectors extracted from R different
scales for each PDV, where each vector corresponds to a spe-
cific scale, and the length of each vector is lr. Fig. 6 illustrates
the approach to extract vectors in different scales at the same
position. It is easy to prove that lr ¼ 8r. Let xrn 2 Rlr be the
vector in the rth scale of the nth PDV, and Xr ¼ ½xr1; xr2; . . . ; xrN �
be the N samples in r-scale. As aforementioned, R feature
projection matrices need to be learned jointly for R scales,
which separately project samples from different scales into
context-aware binary codes br

n ¼ ½br1n; br2n; . . . ; brkn�T 2 f0; 1gK�1

Fig. 5. The flow-chart of face representation approach based on CA-
LBFL. We first divide each training face into several non-overlapped
regions and learn the feature mapping W and the codebook for each
region. Then, we apply the learned filter and the codebook to extract his-
togram feature for each block and concatenate them into a longer fea-
ture for face representation. Lastly, the similarity of face images is
measured with the nearest neighbor classifier.

1. In this work, the conventional K-means is used to learn the code-
book due to its simplicity. While more sophisticated dictionary learning
methods may further improve the performance of our approach, we
don’t consider them because it is out of the key scope of this work.
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of the same lengthK. Similar to CA-LBFL, the learned binary
codes should be context-aware, compact and distinctive.
Also, the binary features extracted at the same position in dif-
ferent scales should be similar as possible, so that both dis-
criminative and complementary information are exploited,
simultaneously.

According to the above motivations, the following opti-
mization objective function to context-aware multi-scale
binary codes is formulated as follows:

min
W1;...;WR;a

G ¼
XR
r¼1

arJðWrÞ þ �DðW1; . . . ;WRÞ

subject to
XR
r¼1

ar ¼ 1; ar � 0;

(13)

where

DðW1; . . . ;WRÞ ¼
XN
n¼1

XR
r1 ;r2¼1
r1 6¼r2

jjbr1
n � br2

n jj2: (14)

Wr is the projection matrix in r-scale, � is the parameter to
balance the two terms and a ¼ ½a1; . . . ;aR� is the weighting
vector.

The physical meaning of the first term in (13) is similar to
CA-LBFL, which makes the learned binary codes context-
aware, compact and distinctive. The objective of the second
term in (13) is to minimize the gap between descriptors in
different scales extracted at the same position.

Similar to CA-LBFL, we relax the sgn(�) function as its
signed magnitude. Since it is not convex for learning
W1; . . . ;WR, a and B1; . . . ;BR simultaneously, we use the
following iterative approach to learn each of them with the
others fixed, where Br ¼ 0:5� ðsgnðWT

r XrÞ þ 1Þ 2 f0; 1gK�N

is the learned binary codes for all samples in r-scale.
Learning Wr by fixing other parameters: when W1; . . . ;

Wr�1;Wrþ1; . . . ;WR, a and B1; . . . ;BR are fixed, (13) can be
rewritten as follows:

min
Wr

GðWrÞ ¼ arJðWrÞ þ �DrðWrÞ; (15)

where

DrðWrÞ ¼
XR

s¼1;s6¼r

jjWT
s Xs �WT

r Xrjj2F : (16)

Therefore, (15) can be further re-written as

min
Wr

G ¼ trðXT
r WrA

TAWT
r XrX

T
r WrA

TAWT
r XrÞ

� 2� trðXT
r WrA

TAWT
r XrÞ þ trðWT

r QrWrÞ
� 2� �1trððBr � 0:5Þ � XT

r WrÞ
� �2 �N � trð11�KWT

r Xr1
N�1Þ

� 2� �
XR

s¼1;s6¼r

trðXT
r WrW

T
s XsÞ

subject to WT
r Wr ¼ I:

(17)

where

Qr , �1XrX
T
r þ �2Xr1

N�111�NXT
r

� �3 � ðXrX
T
r � 2XrM

T
r þMrM

T
r Þ:

(18)

Then, gradient descent method with the curvilinear
search algorithm is used to obtainWr.

Obtaining Br by fixing other parameters: similar to CA-
LBFL, Br is updated as follows when B1; . . . ;Br�1;
Brþ1; . . . ;BR, a andW1; . . . ;WR are fixed

Br ¼ 0:5� ðsgnðWT
r XrÞ þ 1Þ: (19)

Learning a by fixing other parameters: having obtained
W1; . . . ;WR and B1; . . . ;BR, we can update a as follows:

min
a

GðaÞ ¼
XR
r¼1

arJðWrÞ

subject to
XR
r¼1

ar ¼ 1; ar � 0:

(20)

However, (20) leads to a solution that only the ar corre-
sponding to the minimum JðWrÞ equals to one, and the
others equal to zero. As this result simply exploits the best
scale instead of the complementary information of multiple
scales, we modify ar into ap

r , and the objective function can
be rewritten as follows:

min
a

GðaÞ ¼
XR
r¼1

ap
rJðWrÞ

subject to
XR
r¼1

ar ¼ 1; ar � 0:

(21)

In order to solve the optimization problem, Lagrange
function is constructed

Gða;bÞ ¼
XR
r¼1

ap
rJðWrÞ � b

XR
r¼1

ar � 1

 !
: (22)

Fig. 6. An illustration to show how to extract PDV vectors in different
scales at the same position. For pixels in each scale, we first compute
the differences between the central pixel and these lr neighboring pix-
els. Then, these differences are aligned as a vector, which becomes
the input vector in this scale. R is selected as 2 in this figure for easy
illustration, so that there are two vectors extracted with the lengths of
8 and 16, separately.
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Let @Gða;bÞ
@ar

¼ 0, respectively, and @Gða;bÞ
@b

¼ 0, we can obtain

pap�1
1 JðW1Þ ¼ � � � ¼ pap�1

R JðWRÞ ¼ b (23)

XR
r¼1

ar � 1 ¼ 0: (24)

Therefore, ar can be updated as follows:

ar ¼ ð1=JðWrÞÞ1=ðp�1ÞPR
r¼1ð1=JðWrÞÞ1=ðp�1Þ : (25)

Algorithm 2 summarizes the detailed procedure of the
proposed CA-LBMFL method. Having obtained the projec-
tion matrices W1; . . . ;WR, the final binary feature can be
represented by concatenating the R learned binary codes
into a longer binary descriptor. The weighting vector a is
exploited when calculating the Hamming distance of differ-
ent binary features.

Algorithm 2. CA-LBMFL

Input: Training set X1; . . . ;XR, iteration number T , parameters
�1, �2, �3 and �, binary code lengthK
Output: Projection matricesW1; . . . ;WR and the weighting vec-
tor a
1: for r ¼ 1; 2; � � � ; R do
2: InitializeWr as the topK eigenvectors of XrX

T
r

corresponding to theK largest eigenvalues.

3: Initialize Br ¼ 0:5� ðsgnðWT
r XrÞ þ 1Þ.

4: Initialize ar ¼ 1=R.
5: end for
6: for t ¼ 1; 2; . . . ; T do
7: for r ¼ 1; 2; . . . ; R do
8: UpdateWr using (17).
9: Update Br using (19).
10: end for
11: Update a using (25).
12: end for
13: return W1; . . . ;WR and a

5 COUPLED CONTEXT-AWARE LOCAL BINARY

FEATURE LEARNING

In this section, we propose coupled learning methods based
on CA-LBFL and CA-LBMFL for heterogeneous face match-
ing, respectively.

5.1 Coupled CA-LBFL

In recent years, heterogeneous face recognition has attracted
much attention in recent years [47], [48], [49], [50]. Near
infrared versus visible light and photo versus sketch are
typical heterogeneous faces, which are captured under dif-
ferent environments or by different sensors. In this work,
we propose a coupled CA-LBFL method for heterogeneous
face recognition by minimizing the difference between het-
erogeneous faces at the feature level. Unlike CA-LBFL, C-
CA-LBFL learnsK pairs of hash functions to obtain context-
aware local binary features of different modalities simulta-
neously, with the smallest gap between corresponding
codes from heterogeneous face images. Fig. 7 illustrates

how to learn pairs of hash functions to minimize the gap
between corresponding binary codes.

Let X1 ¼ ½x11; x12; . . . ; x1N � and X2 ¼ ½x21; x22; . . . ; x2N � be the N
samples of the first and the second modality of the training
heterogeneous face datasets, respectively, where x1n 2 Rd and
x2n 2 Rd ð1 � n � NÞ are corresponding PDVs extracted from
the same position of a pair of heterogeneous face images. In
C-CA-LBFL, we learn K pairs of hash functions to map and
quantize x1n and x2n into context-aware binary vectors b1

n ¼
½b11n; . . . ; b1Kn�T 2 f0; 1gK�1 and b2

n ¼ ½b21n; . . . ; b2Kn�T 2 f0; 1gK�1.

Letw1
k 2 Rd andw2

k 2 Rd be the projection vectors for the kth
function of each modality, respectively, and the kth binary
codes b1kn and b2kn of x

1
n and x2n can be computed as

b1kn ¼ 0:5� ðsgnððw1
kÞTx1nÞ þ 1Þ (26)

b2kn ¼ 0:5� ðsgnððw2
kÞTx2nÞ þ 1Þ: (27)

We formulate the following optimization objective func-
tion to make the learned binary codes context-aware as well
as to minimize the gap between the codes of different
modalities

min
w1
k
;w2

k

J ¼ J1 þ �1J2 þ �2J3 þ �3J4 þ �4J5

¼
XN
n¼1

X2
m¼1

jj
XK�1

k¼1

jjbmkn � bmðkþ1Þnjj2 � 1jj2

þ �1

XN
n¼1

X2
m¼1

XK
k¼1

ðbmkn � 0:5Þ � ðwm
k ÞTxmn

��� ���2

þ �2

XK
k¼1

X2
m¼1

XN
n¼1

ðbmkn � 0:5Þ
�����

�����
2

� �3

XN
n¼1

XK
k¼1

X2
m¼1

jjbmkn � mm
k jj2

þ �4

XN
n¼1

jjb1n � b2njj2;

(28)

where the physical meanings of the first four terms in (28)
are the same as those of CA-LBFL, which respectively
ensure the learned binary codes context-aware, reduce the
quantization loss, make each feature bit evenly distributed

Fig. 7. An illustration to show how to learn pairs of hash functions to mini-
mize the gap between corresponding binary codes from heterogeneous
face images. For the two corresponding PDVs extracted from the same
position of heterogeneous face images (NIR image for the left, and VIS
image for the right), a pair of hash functions are learned to minimize the
difference between the binary codes, as well as to follow the objective in
CA-LBFL, respectively.

DUAN ET AL.: CONTEXT-AWARE LOCAL BINARY FEATURE LEARNING FOR FACE RECOGNITION 1145



and maximize the variance of the learned binary codes. The
last term J5 in (28) is to minimize the difference between the
corresponding binary codes, so that the gap between the
features learned from different modalities can be reduced.

Let W1 ¼ ½w1
1;w

1
2; . . . ;w

1
K � 2 Rd�K and W2 ¼ ½w2

1;w
2
2; . . . ;

w2
K � 2 Rd�K be the projection matrix of the first and the sec-

ond modalities, so that each pair of samples x1n and x2n can
be mapped into binary vectors as follows:

b1
n ¼ 0:5� ðsgnððW1ÞTx1nÞ þ 1Þ (29)

b2
n ¼ 0:5� ðsgnððW2ÞTx2nÞ þ 1Þ: (30)

Then, (28) can be re-written into

min
W1;W2

J ¼ J1 þ �1J2 þ �2J3 þ �3J4 þ �4J5

¼
X2
m¼1

trððABmÞT ðABmÞ � INÞ2

þ �1

X2
m¼1

jjðBm � 0:5Þ � ðWmÞTXmjj2F

þ �2

X2
m¼1

jjðBm � 0:5Þ � 1N�1jj2F

� �3

X2
m¼1

trððBm �UmÞT ðBm �UmÞÞ

þ �4trððB1 � B2ÞT ðB1 � B2ÞÞ;

(31)

where B1 and B2 are the matrices of all binary codes and U1

and U2 are the mean matrices.
We also relax the sgn(�) function as its signed magnitude

similar to CA-LBFL. Thus, (31) can be rewritten as follows:

min
W

JðWÞ ¼ trðXTWATAWTXXTWATAWTXÞ
� 2� trðXTWATAWTXÞ þ trðWTPWÞ
� 2� �1trððB� 0:5Þ � XTWÞ
� �2 � 2N � trð11�2KWTX12N�1Þ

subject to WTW ¼ I:

(32)

where

�X ¼ X1 �M1 0
0 X2 �M2

� �
;B ¼ B1 B2

� �
;

W ¼ W1

W2

� �
;X ¼ X1 0

0 X2

� �
; ~X ¼ X1

�X2

� �
;

P , �1XX
T þ �2X1

2N�111�2NXT

� �3
�X�XT þ �4

~X~XT :
(33)

We use the gradient descent method to solve the projec-
tionW similar to the Algorithm 1, andW is initialized as the
top K eigenvectors of (�1XX

T þ �2X1
2N�111�2NXT�

�3
�X�XT þ �4

~X~XT ).
Having obtained W, the codebook is learned respectively

for each modalities on the heterogeneous face datasets. Sim-
ilar to CA-LBFL, histogram features are extracted for each
face region and then concatenated into a longer feature for
face representation.

5.2 Coupled CA-LBMFL

Similar to coupled CA-LBFL, we also apply coupled learn-
ing method to CA-LBMFL for heterogeneous face recogni-
tion. The optimization objective function of coupled CA-
LBMFL is as follows:

min
Wi

r;a
G ¼

XR
r¼1

arJðW1
r ;W

2
rÞ þ �

X2
i¼1

DðWi
1; . . . ;W

i
RÞ

subject to
XR
r¼1

ar ¼ 1; ar � 0

(34)

where

JðW1
r ;W

2
rÞ ¼ J1 þ �1J2 þ �2J3 þ �3J4 þ �4J5

¼
X2
m¼1

trðððABm
r ÞT ðABm

r Þ � INÞ2Þ

þ �1

X2
m¼1

jjðBm
r � 0:5Þ � ðWm

r ÞTXm
r jj2F

þ �2

X2
m¼1

jjðBm
r � 0:5Þ � 1N�1jj2F

� �3

X2
m¼1

ðtrððBm
r �Um

r ÞT ðBm
r �Um

r ÞÞ

þ �4trððB1
r � B2

rÞT ðB1
r � B2

rÞÞ

(35)

DðWi
1; . . . ;W

i
RÞ ¼

XN
n¼1

XR
r1 ;r2¼1
r1 6¼r2

jjbr1;i
n � br2;i

n jj2: (36)

The gradient decent method with the curvilinear search
algorithm is used to obtain Wi

r and a, similar to the pro-
posed methods in previous sections.

6 EXPERIMENTS

We compared our methods with several state-of-the-art
descriptors on three widely used homogeneous face datasets
including LFW [51], YTF [52] and FERET [53], and a heteroge-
neous face database CASIA NIR-VIS 2.0 [54]. Then, we sum-
marized the key observations of all the experiments. The
followings describe the details of the experiments and results.

6.1 Homogeneous Face Recognition

In this section, we first evaluated the proposed CA-LBFL
and CA-LBMFL methods on LFW, YTF and FERET data-
bases. Then, we performed cross-dataset evaluation to test
generalization ability of the proposed method and investi-
gate the contributions of different terms to study the impor-
tance of the contextual information, respectively.

6.1.1 Results on LFW

The LFW dataset [51] contains 13,233 face images of 5,749
subjects, which were captured from the web in wild condi-
tions. Face images suffer from large intra-class variations
such as varying poses, expressions, illuminations and back-
grounds. In our experiments, we evaluated our CA-LBFL
and CA-LBMFL with the unsupervised setting and the
image-restricted with label-free outside data setting,
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respectively. We followed the standard evaluation protocol
on the “View 2” dataset [51] including 3,000 matched pairs
and 3,000 mismatched pairs, which were divided into 10
folds and each fold consisted of 300 matched (positive) pairs
and 300 mismatched (negative) pairs. Assuming that the
deviation was not too large, each face image was aligned
with a conventional 2D affine transformation as preprocess-
ing in our method, and then cropped into 128� 128 to
remove background information. In CA-LBFL and CA-
LBMFL, each PDV was mapped into K-bit context-aware
binary codes with the learned projection, and then encoded
into histogram representation with the codebook. In our
experiments, for CA-LBFL, different neighborhood radius
sizes were examined by setting R as 2, 3 and 4, so that PDV
was a 24-, 48-, and 80-dimensional vector for each pixel; for
CA-LBMFL, Rwas fixed as 3, so that each PDV was divided
into three vectors with the length of 8, 16, and 24, respec-
tively. We applied the whitened PCA (WPCA) method to
reduce the feature dimension into 500 to reduce the redun-
dancy [9], [34]. For the unsupervised setting, the nearest
neighbor classifier with the cosine similarity was used for
face verification. For the image-restricted with label-free
outside data setting, the discriminative deep metric learning
(DDML) [55] method was used to learn discriminative simi-
larity measure function for face verification.

Parameter Analysis. We first tested the mean area under
ROC of the proposed CA-LBFL method with the unsuper-
vised setting on “View1” dataset in LFW database with
different parameters, and then applied these parameters
for all following experiments including “View2” in LFW,
YTF and FERET. We set R as 4, and examined the mean
area under ROC versus different values of �1, �2 and �3 by
fixing the binary code length K as 20 and the dictionary
size as 600. The results are shown in Table 1, and three
parameters �1, �2 and �3 were selected as 103, 102 and 109,

respectively, to reach the best performance on LFW with
the unsupervised setting.

Then, binary code length K was tested when the dictio-
nary size was fixed as 600. Fig. 8a shows that the best result
was achieved when binary length was set to 20. Lastly, dif-
ferent dictionary sizes were examined and Fig. 8b shows
that the dictionary size should be set as 600 to obtain the
highest area under ROC. As local region was fixed to 8� 8,
each face image was represented as a 38,400-dimensional
feature vector after using CA-LBFL (38;400 ¼ 500� 8� 8).

For CA-LBMFL method, �1, �2, �3 and the dictionary size
were selected the same as CA-LBFL, and � was fixed to 10.
The code length for each scale was set as 6, respectively, so
that the total binary feature lengthK was 18.

In our algorithms, we set the preferred number of bitwise
shifts as 1, and we also evaluated the mean area under ROC
with different numbers of shifts. Fig. 8c shows that the best
performance is achieved when 1 bit shift change is pre-
ferred, and the accuracy is decreased for other numbers bit-
wise changes. We conject the reason is that zero bitwise
shift decreases the diversity of the learned binary codes,
and more shifts weaken the constraint.

Comparison with the State-of-the-Art Methods. Table 2 tabu-
lates the mean verification rate and area under ROC, and
Fig. 9 shows the ROC curve of our CA-LBFL and CA-
LBMFL compared with the state-of-the-art face descriptors
with the unsupervised setting, respectively. We see that our
CA-LBFL obtained better results than existing hand-crafted
methods such as LARK and PEM, and achieved very com-
petitive performance compared with existing learning-
based methods such as DFD and CBFD. This is because our
CA-LBFL learns context-aware local binary feature, which
encodes more discriminative information and demonstrates
stronger robustness to noise due to the contextual relation-
ship. The performance of our CA-LBFL was further
improved when multiple PDVs with different neighboring
sizes were combined. PAF delivers an outstanding result
on the unsupervised setting of LFW dataset. However, it

TABLE 1
Average Area Under ROC of LFW Dataset with the
Unsupervised Setting versus Varying �1, �2, and �3

Parameters AUC

�1 ¼ 102 �2 ¼ 102 �3 ¼ 107 87.56
�1 ¼ 103 �2 ¼ 102 �3 ¼ 107 88.32
�1 ¼ 103 �2 ¼ 103 �3 ¼ 107 87.82
�1 ¼ 104 �2 ¼ 102 �3 ¼ 107 87.94
�1 ¼ 104 �2 ¼ 103 �3 ¼ 107 87.23
�1 ¼ 103 �2 ¼ 102 �3 ¼ 106 87.54
�1 ¼ 103 �2 ¼ 102 �3 ¼ 108 88.98
�1 ¼ 103 �2 ¼ 102 �3 ¼ 109 89:32
�1 ¼ 103 �2 ¼ 102 �3 ¼ 1010 88.89
�1 ¼ 104 �2 ¼ 103 �3 ¼ 109 89.02

Fig. 8. Average area under ROC (%) of LFW dataset with the unsuper-
vised setting versus varying (a) binary code length, (b) dictionary size
and (c) bitwise shifts.

TABLE 2
Mean Verification Rate (VR) (%) and Area Under ROC (AUC)
(%) Comparison with State-of-the-Art Face Descriptors Under

the Unsupervised Setting of the Standard LFW Protocol

Method VR AUC

LBP [1] 69.45 75.47
SIFT [16] 64.10 54.07
LARK [56] 72.23 78.30
POEM [9] 75.22 -
LHS [57] 73.40 81.07
MRF-MLBP [58] 80.08 89.94
PEM (LBP) [59] 81.10 -
PEM (SIFT) [59] 81.38 -
DFD [8] 84.02 -
High-dim LBP [60] 84.08 -
PAF [61] - 94.05
CBFD [13] - 88.65

CA-LBFL (R ¼ 2) 81.50 86.44
CA-LBFL (R ¼ 3) 82.97 88.92
CA-LBFL (R ¼ 4) 83.30 89.24
CA-LBFL (R ¼ 2 þ 3 þ 4) 84.72 91.66
CA-LBFL (combine) 86:57 95:67

CA-LBMFL (R ¼ 3) 83.22 89.26
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requires strong prior knowledge to design a pose-adaptive
filter, and combines local Gabor filters for face representa-
tion. Our method is a general feature learning approach and
does not require such prior knowledge. We evaluated our
method with the same combination, and obtained 95.67
AUC (over 1.6 percent higher than PAF).

For the CA-LBMFL method, we see that it shows better
performance than CA-LBFL with the same setting of R ¼ 3,
because the information of different scales are better
exploited in CA-LBMFL.

Table 3 tabulates the average verification of the pro-
posed CA-LBFL and CA-LBMFL methods, and Fig. 10
shows the ROC curves of our CA-LBFL as well as other
state-of-the-art face descriptors for the image-restricted
with label-free outside data setting, respectively. We see
that our CA-LBFL achieved very competitive performance
with the existing state-of-the-art methods, and outper-
formed most of them after combining three other existing
hand-crafted descriptors including Sparse SIFT [55],
HOG [55] and high-dimensional LBP [60]. Table 4 shows

that the proposed CA-LBFL (combine) improves the mean
verification rate by more than 2 percent compared with
the combination of Sparse SIFT, HOG and HDLBP, which
shows the effectiveness of the proposed approach. Also,
CA-LBMFL performed better than CA-LBFL with the
same R.

Computational Time. We compared the computational
time with different face feature representation methods.
Our hardware configuration comprises of a 2.8-GHz CPU
and a 15G RAM. Table 5 shows the feature dimension and
the computational time of our proposed method as well as
other different methods. With higher feature dimensions,
both DFD and CA-LBFL improved the recognition perfor-
mance compared with LBP and SIFT. Moreover, our CA-
LBFL is more efficient than DFD as only one PDV is
extracted for one pixel, instead of a set of PDVs extracted
in DFD.

As the optimization of W is one of the key steps in the
proposed approach, we also evaluated the average optimi-
zation time of the proposed approach, and it took 86.27 s to
train the projection matrix. The training time will not be
largely affected by the number of samples, as all optimiza-
tion steps are executed in matrix form.

Fig. 9. ROC curves of different methods on LFW with the unsupervised
setting.

TABLE 3
Mean Verification Rate (VR) and the Standard Error (%)

Comparison with State-of-the-Art Face Descriptors
Under the Image-Restricted with Label-Free Outside

Data Setting of the Standard LFW Protocol

Method VR

LARK supervised [56] 85:10	 0:59
Convolutional DBN [30] 87:77	 0:62
STFRD+PMML [62] 89:35	 0:50
PAF [61] 87:77	 0:51
Sub-SML [63] 89:90	 0:38
VMRS [64] 91:10	 0:59
DDML [55] 90:68	 1:41
LM3L [65] 89:57	 1:53
HPEN+HD-LBP+DDML [66] 92:57	 0:36
HPEN+HD-Gabor+DDML [66] 92:80	 0:47
CBFD [13] 87:23	 1:68
CBFD (combine) [13] 92:62	 1:08

CA-LBFL (R ¼ 2) 86:07	 1:37
CA-LBFL (R ¼ 3) 87:34	 1:53
CA-LBFL (R ¼ 4) 87:86	 1:41
CA-LBFL (R ¼ 2 þ 3 þ 4) 89:21	 1:49
CA-LBFL (combine) 92:75	 1:13

CA-LBMFL (R ¼ 3) 87:70	 1:22

TABLE 4
Comparison of Mean Verification Rate (VR) and the Standard
Error (%) Under the Image-Restricted with Label-Free Outside

Data Setting of the Standard LFW Protocol

Method VR

Sparse SIFT+HOG+HDLBP 90:55	 1:44
CA-LBFL (combine) 92:75	 1:13

TABLE 5
Memory Cost of Each Local Descriptor (Bit), Final

Feature Dimension and Computational Time (ms) of
the Proposed CA-LBFL Method Compared with

Different Feature Extraction Methods

Method Memory Cost Feature Dimension Time

LBP [1] 16 3,776 22.9
SIFT [16] 1,024 8,192 63.7
DFD [8] 200 50,176 1,511.2
CA-LBFL 20 38,400 276.5

Fig. 10. ROC curves of different methods on LFW with the image-
restricted with label-free outside data setting.
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6.1.2 Results on YTF

The YouTube Face dataset [52] contains 3,425 videos from
1,595 different objects with varying variations of pose,
expression and illumination, and the average length of
each video clip is 181.3 frames. In our experiments, we
followed the standard evaluation protocol [52] of uncon-
strained face verification including 5,000 video pairs,
which were divided into 10 folds and each fold consists
of 250 intra-personal pairs and 250 inter-personal pairs.
We first learned feature representation using our CA-
LBFL and CA-LBMFL for each frame of video clips, sepa-
rately. As all face images have been aligned already, we
averaged all descriptors of one video clip to make a mean
vector as the feature of the video. Finally, we applied
WPCA to reduce the feature dimension into 500. Simi-
larly, DDML was used in the image-restricted setting for
face verification.

Table 6 tabulates the average verification rate of our CA-
LBFL, CA-LBMFL and the state-of-the-art learning-based
face descriptors on YTF with the image-restricted setting.
We see that our methods reached a higher verification rate
than these commonly used descriptors. Moreover, the per-
formance was further improved when multiple PDVs with
different neighboring sizes were combined.

Table 7 and Fig. 11 show the comparison between our
method and the state-of-the-art face verification methods.
While DeepFace [71] obtained the best results, our CA-
LBFL still achieved very competitive performance with
other state-of-the-art methods. Compared to DeepFace
which requires large amounts of labeled samples for feature
learning, our method is unsupervised and the number of
parameters is heavily reduced. Better recognition rate is
obtained after combining our CA-LBFL with LBP, CSLBP
and FPLBP. Table 8 shows that there is a more than 3 per-
cent improvement in accuracy for CA-LBFL (combine) com-
pared with the combination of LBP, CSLBP and FPLBP.

6.1.3 Results on FERET

The FERET database is one of the largest publicly available
databases, consisting of 13,539 face images of 1,565 subjects
who are diverse across age, gender, and ethnicity. We fol-
lowed the standard FERET evaluation protocol [53], where
six sets including the training, fa, fb, fc, dup1, and dup2 were
constructed. According to the provided eye coordinates, all
face images were aligned and cropped into 128�128 pixels.
We performed feature learning on the training set and
applied the learned projection on the other five sets for fea-
ture extraction. Lastly, we took fa as the gallery set, and the
others as probe sets. For CA-LBFL, the codebook size was
set to 500, and as the local region was fixed to 8�8, the
dimension of feature vector after using CA-LBFL was
32,000. For CA-LBMFL, the codebook size was fixed to 600.
Finally, we applied the whitened PCA (WPCA) method to
project each sample into a 1,000-dimensional feature vector.
Nearest neighbor classifier was used for face matching.

Table 9 tabulates the rank-one recognition rate of our
methods as well as the state-of-the-art feature descriptors on
FERET dataset. We see that our methods reached the best
recognition rates on all four subsets, with the smallest gain of

TABLE 6
Recognition Accuracy and the Standard Error (%) Comparison

with the Commonly Used Face Descriptors Under the
Image-Restricted Setting of the Standard YTF Protocol

Method Accuracy

LBP [1] 75:9	 1:4
SIFT [16] 76:4	 0:9
FPLBP [67] 73:6	 1:6
CSLBP [68] 73:7	 1:6
MBGS (LBP) [52] 76:4	 1:8
MBGS+SVM (LBP) [69] 78:9	 1:9
LE [35] 69:7	 2:1
DF.D [8] 78:1	 0:9

CA-LBFL (R ¼ 2) 77:8	 0:9
CA-LBFL (R ¼ 3) 79:1	 1:3
CA-LBFL (R ¼ 4) 80:3	 1:0
CA-LBFL (R ¼ 2 þ 3 þ 4) 81:2	 1:2

CA-LBMFL (R ¼ 3) 79:4	 0:8

TABLE 7
Recognition Accuracy and the Standard Error (%) Comparison
with the State-of-the-Art Face Verification Methods Under the

Image-Restricted Setting of the Standard YTF Protocol

Method Accuracy

APEM (LBP) [59] 77:4	 1:5
APEM (SIFT) [59] 78:5	 1:4
APEM (fusion) [59] 79:1	 1:5
STFRD+PMML [62] 79:5	 2:5
DDML (LBP) [55] 81:3	 1:6
DDML (combine) [55] 82:3	 1:5
EigenPEP [70] 84:8	 1:4
LM3L [55] 81:3	 1:2
CBFD [13] 78:2	 1:2
DeepFace [71] 91:4	 1:1

CA-LBFL (R ¼ 2 þ 3 þ 4) 81:2	 1:2
CA-LBFL (combine) 83:3	 1:3

Fig. 11. ROC curves of different methods on YTF with the image-
restricted setting.

TABLE 8
Comparison of Mean Accuracy and the Standard
Error (%) Under the Image-Restricted Setting

of the Standard YTF Protocol

Method Accuracy

LBP + CSLBP + FPLBP 80:0	 1:4
CA-LBFL (combine) 83:3	 1:3
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1.8 percent in dup1 set and 2.1 percent in dup2 set. For CA-
LBFL, compared with the state-of-the-art hand-crafted
descriptors such as HGGP, GV-LBP-TOP and GV-LBP, CA-
LBFL learns the feature descriptors in a data-driven way,
which makes it more data-adaptive. As for recently pro-
posed learning-based feature descriptors such as DFD and
CBFD, our CA-LBFL is more stable and robust to noise due
to the usage of contextual information. Therefore, higher rec-
ognition rates were obtained in our CA-LBFL method. For
CA-LBMFL, besides all the advantages in CA-LBFL, it also
exploits the specific characteristic from different scales, and
delivered the best results in all four subsets.

6.2 Heterogeneous Face Recognition

In order to evaluate the effectiveness of the proposed
method on heterogeneous faces, we further evaluated our

C-CA-LBFL and C-CA-LBMFL on the CASIA NIR-VIS 2.0
dataset [54], which was used for heterogeneous face match-
ing evaluation. The database consists of 725 subjects, with 1-
22 VIS and 5-50 NIR face images per subject. Face images
were cropped into 128 � 128 based on eye coordinates.

We followed the standard CASIA NIR-VIS 2.0 evaluation
protocol, where the VIS images were taken as the gallery set
and the NIR images as the probe set. First, DOG was used
to pre-process each face image, which was used to learn the
coupled filter as well as the codebook. Then, each histogram
feature was projected into a 400-dimensional vector by
WPCA. Lastly, the nearest neighbor classifier with the
cosine similarity was utilized for face matching. Following
the experiment on LFW dataset, parameters �1, �2 and �3

were set as 103, 102 and 109, respectively. �4 was selected as
103 and �was select as 10 by cross validation. Table 10 tabu-
lates the rank-one recognition rate and the mean verification
rate under different FAR with the CASIA NIR-VIS 2.0 evalu-
ation protocol, and Fig. 12 shows the ROC curves of differ-
ent methods. In the experiments, we compared the
proposed C-CA-LBFL with several commonly-used hetero-
geneous face recognition methods, such as common dis-
criminant feature extraction (CDFE) [48], multi-view
discriminant analysis (MvDA) [47], generalized multiview
analysis (GMA) [74]. We see that our C-CA-LBFL outper-
formed most of other existing methods, and better perfor-
mance was obtained after LDA is used for classification.
Compared with the existing descriptor-based methods, our
C-CA-LBFL learns a common subspace to reduce the
modality difference, which is more effective to heteroge-
neous face matching. Compared with the existing learning-
based methods which learn mappings to project heteroge-
neous faces into a common space, our C-CA-LBFL learns
the modality-invariant descriptors at the feature level,
which reduces the modality gap more effectively. The per-
formance was further improved after a more sufficient utili-
zation of difference scales for C-CA-LBMFL.

6.3 Comparison with CNN

We first conducted experiments on LFW and YTF to com-
pare the proposed CA-LBFL and the state-of-the-art CNN
methods by combining CA-LBFL with the pre-trained
VGG-16 network, and Table 11 shows the experimental
results. We observe that the proposed CA-LBFL+VGG

TABLE 9
Rank-One Recognition Rates (%) Comparison with

State-of-the-Art Feature Descriptors with the
Standard FERET Evaluation Protocol

Method fb fc dup1 dup2

LBP [1] 93.0 51.0 61.0 50.0
LGBP [12] 94.0 97.0 68.0 53.0
LGT [6] 97.0 90.0 71.0 67.0
HGGP [11] 97.6 98.9 77.7 76.1
HOG [72] 90.0 74.0 54.0 46.6
LDP [10] 94.0 83.0 62.0 53.0
GV-LBP-TOP [7] 98.4 99.0 82.0 81.6
GV-LBP [7] 98.1 98.5 80.9 81.2
LQP [34] 99:8 94.3 85.5 78.6
POEM [9] 97.0 95.0 77.6 76.2
s-POEM [73] 99.4 100:0 91.7 90.2
DFD [8] 99.4 100:0 91.8 92.3
CBFD [13] 99:8 100:0 93.5 93.2

CA-LBFL (R ¼ 2) 98.5 99.5 91.2 89.3
CA-LBFL (R ¼ 3) 99:8 100:0 94.9 94.5
CA-LBFL (R ¼ 4) 99:8 100:0 95.2 94.9

CA-LBMFL (R ¼ 3) 99:8 100:0 95:3 95:3

TABLE 10
Comparisons of the Rank-One Recognition Rate (%) and
the Mean Verification Rate (%) with the Standard CASIA
NIR-VIS 2.0 Evaluation Protocol, Where VR1 and VR2

Respectively Denote the Mean Verification Rate
When the FAR Is Set to 0.1 and 1.0 Percent

Method Rank1 VR1 VR2

CDFE [48] 27:9	 2:9 6.9 23.3
MvDA [47] 41:6	 4:1 19.2 42.8
GMLDA [74] 23:7	 1:4 5.1 16.6
GMMFA [74] 24:8	 1:1 7.6 19.5
LBP [1] 35:4	 2:7 4.2 31.8
LBP+LDA [1] 60:6	 2:4 23.9 52.7
TP-LBP [67] 36:2	 1:6 3.7 12.9
FP-LBP [67] 23:2	 1:0 1.7 9.0
SIFT [16] 49:1	 2:3 14.3 40.8
SIFT+LDA [16] 72:3	 1:5 35.9 63.1
C-CBFD [13] 56:6	 2:4 20.4 44.3
C-CBFD+LDA [13] 81:8	 2:3 47.3 75.3

C-CA-LBFL 58:3	 1:1 20.4 45.7
C-CA-LBFL+LDA 86:1	 0:9 51.6 80.8

C-CA-LBMFL 59:8	 0:5 21.2 45.4
C-CA-LBMFL+LDA 87:9	 0:9 52:1 82:7

Fig. 12. ROC curves of different methods on CASIA NIR-VIS 2.0
dataset.
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obtains competitive results with existing state-of-the-art
CNN methods on both datasets and the combination
increases the verification rate of VGG, which shows the
effectiveness of the proposed approach.

Then, we compared our CA-LBFL with VGG network
without outside face data by fine-tuning the pre-trained
VGG-ImageNet [75] with different amount of facial images
on the LFW dataset. On the one hand, it is very hard to train
such a deep convolutional network from scratch with only
thousands of facial images. On the other hand, ImageNet
does not contain cropped and aligned faces, whichmaintains
the fairness of the experiment. We flipped each facial image
for data augmentation, and appliedWPCA to reduce the fea-
ture dimension into 500 for all the methods. Table 12 shows
the experimental results. We observe that VGG-ImageNet
obtains 73.5 percent verification rate on the LFW dataset,
which presents discriminativeness to faces to some extent.
However, the performance improves slightlywith only thou-
sands of training data, because there are huge amount of
parameters to train. Instead, the proposed CA-LBFL simply
learns a projection for each local patch, which grasps the key
properties of the learned binary codes. Therefore, deep face
models still require millions of training samples, and our
shallowmodels perform better on the small training set.

6.4 Evaluation on Other Applications

We conducted experiments on other applications to provide
further demonstration of the effectiveness of the proposed
methods. Table 13 shows the experimental results of CA-
LBFL compared with three widely used local features
including LBP [15], SIFT [16] and CBFD [13], where Bro-
datz [81], KTH-TIPS [82] and CUReT [83] are benchmark
texture datasets, and Scene-15 [84] is a widely used scene
dataset. We observe that the proposed CA-LBFL outper-
forms other compared local features on all the datasets.

7 CONCLUSION

In this paper, we have proposed a context-aware local
binary feature learning method for face recognition. In
order to exploit more specific information from different
scales, we have presented a context-aware local binary
multi-scale feature learning method. Moreover, we have
applied the above two methods to heterogeneous face
matching by coupled learning methods (C-CA-LBFL and C-
CA-LBMFL). Our methods achieve better or very competi-
tive recognition performance on four widely used bench-
mark face databases compared with the state-of-the-art face
descriptors. As our methods are general feature learning
methods, it is reasonable and interesting to apply them to
other computer vision applications such as object recogni-
tion and visual tracking in the future.
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